
© 2021 JETIR April 2021, Volume 8, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2104007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 43

Advance Run-Time Implementation By Using

Query Optimisation
Prof. Swati C. Tawalare1, Prof. Dhiraj S.kalyankar2

Abstract: Object querying is an abstraction of operations over collections, whereas manual implementations are performed at a low

level, forcing the developers to specify how a task must be done. Some object-oriented languages allow the programmers to express

queries explicitly in the code, which are optimized using the query optimisation techniques from the database domain. In this regard,

we have developed a method that performs query optimisation at compile-time to reduce the burden of optimisation at run-time to

improve the performance of the code Implementation

Keywords: Querying; Histogram; query optimisation; joins.

I . INTRODUCTION

Query processing is the sequence of actions that input a query

formulated in the user language and delivers. As a result, the

data asked for. Query processing involves query transformation

and query Implementation. Query transformation is the

mapping of queries and query results back and forth through the

different levels of the DBMS. Query Implementation is the

actual data retrieval according to some access plan, i.e., a

sequence of physical access language operations. An essential

task in query processing is query optimisation. Usually, user

languages are high-level, declarative languages that state what

data should be retrieved, not how to retrieve them. For each user

query, many different Implementation plans exist, each having

its associated costs. Ideally, the task of query optimisation is to

find the best Implementation plan, i.e., the Implementation plan

that costs the least, according to some performance measure.

Usually, one has to accept feasible Implementation plans

because the number of semantically equivalent programs is too

large to allow for enumerative search. A query is an expression

that describes the information that one wants to search for in a

database. Query optimizers select the most efficient access plan

for a question based on competing plans' estimated costs. These

costs are, in turn, based on estimates of intermediate result

sizes. Sophisticated user interfaces also use estimates of result

sizes as feedback to users before a query is executed.

Such feedback helps to detect errors in queries or

misconceptions about the database. Query result sizes are

usually estimated using various statistics that are maintained for

relations in the database. These statistics merely approximate

the distribution of data values in attributes of the connections.

Consequently, they represent an inaccurate picture of the actual

contents of the database. The resulting size-estimation errors

may undermine the validity of the optimizer's decisions or

render the user interface application unreliable. Earlier work

has shown that mistakes in query result size estimates may

increase exponentially with the number of joins. In conjunction

with the increasing complexity of queries, this result

demonstrates the critical importance of accurate estimation.

Several techniques have been proposed in the literature to

estimate query result sizes, including histograms, sampling, and

parametric approaches. Of these,[1]histograms approximate the

frequency distribution of an attribute by grouping attribute

values into "buckets" (subsets) and comparing actual attribute

values and their frequencies in the data based on summary

statistics maintained in each bucket. Implementing operations

over these collections with conventional techniques severely

lacks abstraction. Step-by-step instructions must be provided on

how to iterate over the array, select elements, and operate on

the details.

Figure.1 Optimisation process

JQL is an addition to Java that provides the capability for

querying collections of objects.[6] These queries can be applied

on objects in groups in the program or used to check

expressions on all instances of specific types at run-time.

Questions allow the query engine to take up the task of

implementation details by providing abstractions to handle sets

of objects, making the code smaller and allowing the query

evaluator to choose the optimisation approaches dynamically

even though the situation changes run-time. The Java code and

the JQL query will give the same set of results, but the JQL code

is elegant, brief, and abstracts away the accurate method of

finding the matches. Java Query Language (JQL) by generating

the dynamic join ordering strategies. Queries can be evaluated

http://www.jetir.org/

© 2021 JETIR April 2021, Volume 8, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2104007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 44

over one collection of objects or many groups, allowing the

inspection of relationships between objects in these collections.

The Java Query Language (JQL) provides first-class object

querying for Java.

II. Query Implementation

For example, A difficulty with this decomposition is

representing students who are also teachers. One solution is to

have separate Student and Teacher objects, which are relate by

name.

The following code can then be used to identify students who

are teachers:

List<Tuple2<Faculty, Student>>

 matches = new Array List<..>();

 for(Faculty f : all Faculty) { for(Student s : all Students) {

if(s.name.equals(f.name)) {

matches. add(new Tuple2<Faculty, Student>(f,s));

}}}

In database terms, this code joins the name field for the

allFaculty and allStudent collections[4]. The code is

cumbersome and can be Replaced with the following object

query, which is more succinct and, potentially, more efficient:

List<Tuple2<Faculty, Student>> matches;

Matches = selectAll (Faculty f=allFaculty, Student

s=allStudents: f.name.equals (s.name));

This gives the same set of results as the loop code. The selectAll

primitive returns a list of tuples containing all possible

instantiations of the domain variables (i.e., those declared

before the colon) where the query expression holds (i.e., after

the colon). The domain variables determine the set of objects

which the query ranges over: they can be initialized from a

collection (as above); or left uninitialized to range over the

entire extent set (i.e., the set of all instantiated objects) of their

type. Queries can define as many domain variables as necessary

and can use the usual array of expression constructs found in

Java. One difference from regular Java expressions is that

Boolean operators, such as && and ||, do not imply any order

of Implementation for their operands. It allows flexibility in the

order they are evaluated, potentially leading to greater

efficiency. As well as its simplicity, there are other advantages

to using this query in place of the loop code. The query

evaluator can apply well-known optimisations which the

programmer might have missed. By leaving the decision of

which optimisation to use until run-time, it can make a more

informed decision based upon the data's dynamic properties

(such as the relative size of input sets), something that is, at best,

challenging for a programmer to do.

A good example, which applies in this case, is the so-called

hash-join. The idea is to avoid enumerating all of all Faculty ×

all Students when there are few matches. A hash-map is

constructing from the largest of the two collections, which maps

the value being joined upon (in this case name) back to its

objects. This still requires O(SF) time in the worst-case, wheres

= |all Students| and f = |all Faculty|, but in practice is likely to

be linear in the number of matches (contrasting with a nested

loop which always takes O(SF) time). We have prototyped a

Java Query Language system (JQL), which permits queries

over object extents and collections in Java. The implementation

consists of three main components: a compiler, a query

evaluator, and a run-time system for tracking all active objects

in the program. The latter enables the query evaluator to range

over the extent sets of all classes. Our purpose in doing this is

twofold: firstly, to assess the performance impact of such a

system and provide a platform for experimenting with the idea

of using queries as a first-class language construct.

III. Evaluation Pipeline

The JQL evaluator evaluates a query by pushing tuples through

a staged pipeline[4]. Each stage, known as a join in the

databases' language, corresponds to a condition in the query.

Only tuples matching a join's condition are allowed to pass

through to the next. Those tuples which make it through to the

end are added to the result set. Each join accepts two lists of

tuples, L(left) and R(right), and combines them, producing a

single list. We enforce the restriction that, for each intermediate

join, either input comes from the previous stage or one comes

directly from an input collection, and the other comes from the

last step. It is known as a linear processing tree, and it simplifies

the query evaluator, although it can lead to inefficiency in some

cases.

IV. JQL Query Evaluator

The core component of the JQL system is the query evaluator.

This is responsible for applying whatever optimisations it can

to evaluate queries efficiently[4]. The evaluator is a call at run-

time with a tree representation of the question (called the query

http://www.jetir.org/

© 2021 JETIR April 2021, Volume 8, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2104007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 45

tree). The tree itself is either constructed by the JQL Compiler

(for static queries) or by the user (for dynamic questions).

Figure 2. Illustrating a Query Pipeline

Given query Q, we use the histogram H to estimate the query

predicates' selectivity and the joins' selectivities, which is used

to construct a query plan.

The first Implementation of Query Q uses the histogram H1 to

estimate the selectivity. Then the result of the query is

computed. But for the subsequent Implementation of the same

query Q after a time T, the same histogram H can be left invalid.

This situation arises because there is a possibility that the

underlying data is updated between the first and the second

Implementations of the same query. Firstly, we check if the

question is present in the log. The period difference between

consecutive Implementations of the same query Q from the

query log is compute. If that value is greater than a pre-

specified time interval, we directly recomputed the histogram

because we assumed the data is modified within a pre-specified

time interval. We first compute the error through the error

estimate function, and then, based on the error estimate, we

decide whether to recomputed the histogram or not. If the query

is not present in the log, then we execute the query based upon

the initial histogram that reduces the overhead cost of

incremental maintenance of histogram the experimental results

of how our approach various types of questions the comparison

of run-times of our approach and the

In this method, they are using selectivity estimate based on

sampling some tuples, but that does not lead to efficient

ordering of joins and predicates in a query. Therefore, we

propose using the forecasts of selectivities of joins and the

predicates from histograms to provide us an efficient ordering

of joins and predicates in a query. Once we collect this

information, we can form the query plan by having the order of

joins and predicates in a question. After we get the query plan

at compile-time, we execute that plan at run-time to reduce the

Implementation time. JQL code's run-time due to our approach

of optimizing the query and handling data updates using

histograms.

A. Estimating Selectivity Using Histogram

A predicate's selectivity in a query is a decisive aspect for query

plan generation[6]. The ordering of predicates can considerably

affect the time needed to process a join query. To have the

query plan ready at compile-time, we need to have all the query

predicates' selectivities. To calculate these selectivities, we use

histograms. The histograms are built using the number of times

an object is called. For this, we partition the domain of the

predicate into intervals called windows. With the help of past

queries, the selectivity of a predicate is derived concerning its

window. This histogram approach would help us estimate the

selectivity of a join and hence decide on the order in which the

joins have to be executed. So, we get the join ordering and the

predicate ordering in the query expression at compile-time

itself. Thus, from this available information, we can construct

a query plan.

B. Building the Histogram

A histogram is one of the essential quality tools. It is used to

graphically summarize and display the distribution[1] and

variation of a process data set. A frequency distribution shows

how often each different value in a set of data occurs. The

primary purpose of a histogram is to clarify the presentation of

data. When the access frequency is high and the tuples are

accessed more often, we need to recompute the histogram.

When the access frequency is low, the tuples are not accessed

frequently, and therefore, there is no need to recomputed the

histogram even in case of a data change. When building a

histogram, we need to assign the values to buckets. The

frequency distribution for numerical data is straightforward,

but the frequency distribution for alphabetical information is

not. Considering the alphabetical data such as first names, last

names, Organization names, etc., the question arises as to how

we can split these into buckets. We propose here to group the

alphabetical data concerning the letter they start with and

alphabets of similar frequency of occurrences grouped into a

single bucket. To do this grouping, we use statistics from

Figure that are computed by analysts showing the probable

number of circumstances of each alphabet as a starting alphabet

of textual data. This grouping avoids the existence of a very

high-frequency alphabet with a very low-frequency alphabet in

a bucket.

http://www.jetir.org/

© 2021 JETIR April 2021, Volume 8, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2104007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 46

Figure 3. Frequencies of alphabets

C. Incremental Maintenance of Histograms

[1]we propose an incremental technique, which maintains

approximate histograms within specified error bounds at all

times with high probability and never accesses the underlying

relations for this purpose. There are two components to our

incremental approach: (i) maintaining a backing sample and (ii)

a framework for maintaining an approximate histogram that

performs a few program instructions in response to each update

to the database and detects when the histogram requires an

adjustment of one or more of its bucket boundaries. Such

adjustments make use of the backing sample. There is a

fundamental distinction between the backing sample and the

histogram it supports: the histogram is accessed more

frequently than the sample and uses less memory, and hence it

can be stored in the main memory while the sample is likely

stored on disk. A backing sample is a uniform random sample

of the tuples in a relation that is kept up a to- date in the presence

of updates. For each tuple, the sample contains the unique row

id and one or more attribute values. We argue that maintaining

a backing sample is helpful for histogram computation,

selectivity estimation, etc.[6]In most sampling-based

estimation techniques, whenever a sample of size _ is needed,

either the entire relation is scanned to extract the sample, or

several random disk blocks are read. In the latter case, the tuples

in a disk block may be highly correlated, and hence to obtain a

truly random sample, _ disk blocks must be read. A backing

sample can be stored in consecutive disk blocks and can

therefore be scanned by reading sequential disk blocks.

Moreover, for each tuple in the sample, only the unique row id

and the attribute(s) of interest are retained. Thus the entire

sample can be stored in only a small number of disk blocks for

even faster retrieval. Finally, an indexing structure for the

sample can be created, maintained, and stored; the index

enables quick access to sample values within any desired range.

The underlying data could be mutable. For such mutable data,

we need a technique by which we can restructure the histograms

accordingly. Thus, in between multiple query Implementations,

if the database is updated, we compute the histogram's

estimation error by using the following equations.

 where μa is the estimation error for every attribute

 β is the number of buckets,

 N is the number of tuples in R

 S is the number of selected tuples

 Fi is the frequency of bucket I as in the histogram

 qf= S/N is the query frequency

 Bi is the observed frequency

 Ti is the error estimate for each table

 Wi is the weights concerning every attribute

depending on the rate of change

If the calculated error (Ti) is > 0.5, then we update the

histogram.[6] we use the same old histogram to give the

selectivity estimate. Next, we scan the database and update

buckets. If some buckets exceed a fixed threshold, then we use

the split and merge algorithm. However, the issues are how and

when we know that the underlying database has been updated.

For this, a heuristic that can be used is to consider popular

queries. A popular query is a query that has a high frequency

of occurrence. These popular queries can help in reporting data

changes. We can constantly keep track of the result set of a

popular question. When the consecutive Implementations of

this query do not match, it indicates a database update, and thus,

we can compute the error and decide whether to recompute the

histogram or continue with the existing histogram. However,

we do not want to recompute a histogram for a table that is not

often accessed. Thus, we use the frequency of access to a

particular table to decide when and when not to compute the

histogram. If the access frequency is getting higher, it increases

its probability, and the corresponding histogram needs to be

maintained up-to-date. Access Frequency represents the

number of tuples accessed by a query. When the access

frequency is high and the tuples are accessed more often, we

need to recompute the histogram. When the access frequency

is low, the tuples are not accessed frequently, and therefore,

there is no need to recompute the histogram even in case of a

data change.

http://www.jetir.org/

© 2021 JETIR April 2021, Volume 8, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2104007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 47

D. Method Outline for Error Estimation

We compute the error estimate for each attribute in the database

table by using the standard deviation between updated data

values and old data values in the histogram buckets. Then, for

every table, we have error estimates for all the attributes. Then,

we take a weighted average of all the attribute error estimates.

If that weighted average is more significant than a certain

threshold, then the table's histogram must be updated.

For every selection on the histogram attribute, we compute the

approximation error (Ti). We calculate the error estimate for all

the details (μa) in the table for each table. Then for each table,

we take a weighted average of all the attribute errors. If that

computed error (Ti) is greater than a threshold, we update the

histogram; otherwise, we need not update it. If error (Ti) > 0.5,

then we scan the database and update buckets. If some buckets

exceed a threshold, then we use split and merge algorithms.

E. The Split & Merge Algorithm

The split and merge algorithm helps reduce the cost of building

and maintaining histograms for large tables. The algorithm is

as follows: When a bucket count reaches the threshold, T, we

split the bucket into two halves instead of recomputing the

entire histogram from the data. To maintain the number of

buckets (β) fixed, we merge two adjacent buckets whose total

count is least and does not exceed threshold T if such a pair of

buckets can be found. Only when a merge is not possible, we

recomputed the histogram from data. The operation of merging

two adjacent buckets merely involves adding the counts of the

two buckets and disposing of the boundary between them. Split

a bucket, an approximate median value in the bucket is selected

to serve as the bucket boundary between the two new buckets

using the backing sample. As new tuples are added, we

increment the counts of appropriate buckets. When a count

exceeds the threshold T, the entire histogram is recomputed, or,

using split merge, we split and merge the buckets. The

algorithm for breaking the buckets starts with iterating through

a list of buckets, splitting the buckets which exceed the

threshold, and finally returning the new set of buckets. After

splitting is done, we try to merge any two buckets that add up

to the most negligible value and whose count is less than a

certain threshold. Then we link those two buckets. If we fail to

find any pair of buckets to merge, then we recomputed the

histogram from the data. Finally, we return the set of buckets at

the end of the algorithm. Thus, the problem of incrementally

maintaining the histograms has been resolved. Having

estimated a join and predicates' selectivity, we get the join and

predicate ordering at compile-time.

Figure 4. split and merge algorithm

 V. Implication

 Our approach reduces run-time Implementation less

than the existing JQL code's run-time due to our policy

of optimizing the query and handling data updates

using histograms.

 We proposed a technique for query optimisation at

compile-time by reducing the burden of optimisation

at run-time. We suggested using histograms to

estimate the selectivity of joins and predicates in a

query and then, based on those estimates, to order

query joins and predicates in a question. We have

obtained the query plan at compile-time from the join

and predicate order, and then we executed the query

plan at run-time. Error estimate and split merge

algorithms are efficient and maintain the histograms

accurately

 The comparison of run-times of our approach and the

JQL approach for all the benchmark queries. The

difference in run-times has occurred because in our

process, we have estimated selectivities using

histograms, and these histograms are incrementally

maintained at compile time which provides the

optimal join order strategy most of the times faster

than the exhaustive join order strategy used by JQL

VI. CONCLUSION

I have shown the query optimisation strategies from the

database domain that can improve the run time

Implementations in the programming language. We proposed a

technique for query optimisation at compile-time by reducing

the burden of optimisation at run-time. I suggested using

histograms to get the estimates of selectivity of joins and

http://www.jetir.org/

© 2021 JETIR April 2021, Volume 8, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2104007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 48

predicates in a query and then, based on those estimates, to

order query joins and predicates in a question.

VII. REFERENCES

[1]Ashraf Aboulnaga, Surajit Chaudhuri, "Self-tuning

histograms: building histograms without looking at data,"

Proceedings of the 1999 ACM SIGMOD international

conference on Management of data, pp. 181-292, 1999.

[2]S. Chiba. A metaobject protocol for C++. In Proceedings of

the ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), pages 285–

299. ACM Press, 1995.

[3] C. Hobart and B. A. Malloy. The design of an OCL query-

based debugger for C++. In Proceedings of the ACM

Symposium on Applied Computing (SAC), pages 658–662.

ACM Press, 2001.

[4] Darren Willis, David J. Pearce, James Noble, "Caching and

Incrementalisation in the Java Query Language," Proceedings

of the 2008 ACM SIGPLAN conference on Object-oriented

programming systems languages and applications, pp. 1-18,

2008.

[5] E. Meijer, B. Beckman, and G. M. Bierman. LINQ:

reconciling object, relations, and XML in the .NET framework.

In Proceedings of the ACM Symposium on Principles Database

Systems, 2006.

[6] Venkata Krishna, "Exploring Query Optimisation in

Programming Codes by Reducing Run-Time Implementation,"

Department of Computer Science, Missouri University of

Science and Technology, Rolla, MO,2010

[8]Ihab F. Ilyas et al. (2003), "Estimating Compilation Time of

a Query Optimizer," Proceedings of the 2003 ACM SIGMOD

international conference on data management, pp 373 –384,

2003.

[9] S. Goldsmith & R. O'Callahan (2005) A. Aiken. Relational

queries over program traces. In Proceedings of the ACM

Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 385–402.

ACM Press, 2005

[10] YE Ioannidis, R. Ng, K. Shim & TK. Selis(1992)

.Parametric Query Optimisation, In Proceedings of the

Eighteenth International Conference on Very Large Databases

(VLDB), pp. 103-114, 1992.

 [11] Richard L. Cole, Goetz Graefe, "Optimisation of dynamic

query evaluation plans," Proceedings of the 1994 ACM

SIGMOD international conference on Management of data, pp.

150-160, 1994.

[12] P.G. Selinger, "Access path selection in relational database

systems," Proceedings of 1979 ACM SIGMOD International

Conference on Management of Data.

[13] Navin Kabra, David J. DeWitt, "Efficient mid-query re-

optimization of sub-optimal query Implementation plans,"

ACM SIGMOD Record, vol. 27, pp. 106-117,1998.

[14] Francis Chu, Joseph Y. Halpen, Praveen Seshadri, "Least

expected cost query optimisation: an exercise in futility,"

Proceedings of the eighteenth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pp.

138-147, 1999.

[15] Surajit Chaudhuri," An overview of query optimisation in

relational systems," Proceedings of the seventeenth ACM

SIGACT-SIGMODSIGART symposium on Principles of

database systems, pp. 34-43, 1998.

[16] Donald Kossmann, Konrad Stocker, "Iterative dynamic

programming: a new class of query optimisation algorithms,"

ACM Transactions on Database Systems, vol. 25, pp. 43-82,

2000.

[17] Michael Steinbrunn, Guido Moerkotte, Alfons Kemper,

"Heuristic and randomized optimisation for the join ordering

problem," VLDB Journal, vol. 6, pp. 191-208, 1997.

[18] G. Eason, B. Noble, and I. N. Sneddon, On certain integrals

of Arun N. Swami, Balakrishna R. Iyer, "A Polynomial-Time

Algorithm for Optimizing Join Queries," Proceedings of the

Ninth International Conference on Data Engineering, pp. 345-

354, 1993.

[19] Joseph M. Hellerstein, Michael Stonebraker, "Predicate

migration: optimizing queries with expensive predicates,"

ACM SIGMOD Record, vol. 22, pp. 267-276, 1993.

[20] YE Ioannidis, Younkyung Kang, "Randomized algorithms

for optimizing large join queries," ACM SIGMOD Record, vol.

19, pp. 312-321, 1990.

[21]PedroBizarro, NicolasBruno, David J. DeWitt,

"Progressive Parametric Query Optimisation," IEEE

Transactions on Knowledge and Data Engineering, vol. 21, pp.

582-594, 2009.

[22] K. D. Seppi, J.W. Barnes, C.N. Morris, "A Bayesian

approach to database query optimisation," ORSA Journal on

Computing, pp. 410- 419, 1993.

http://www.jetir.org/

