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Abstract: Object querying is an abstraction of operations over collections, whereas manual implementations are performed at a low 

level, forcing the developers to specify how a task must be done. Some object-oriented languages allow the programmers to express 

queries explicitly in the code, which are optimized using the query optimisation techniques from the database domain. In this regard, 

we have developed a method that performs query optimisation at compile-time to reduce the burden of optimisation at run-time to 

improve the performance of the code Implementation 
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I .  INTRODUCTION  

Query processing is the sequence of actions that input a query 

formulated in the user language and delivers. As a result, the 

data asked for. Query processing involves query transformation 

and query Implementation. Query transformation is the 

mapping of queries and query results back and forth through the 

different levels of the DBMS. Query Implementation is the 

actual data retrieval according to some access plan, i.e., a 

sequence of physical access language operations. An essential 

task in query processing is query optimisation. Usually, user 

languages are high-level, declarative languages that state what 

data should be retrieved, not how to retrieve them. For each user 

query, many different Implementation plans exist, each having 

its associated costs. Ideally, the task of query optimisation is to 

find the best Implementation plan, i.e., the Implementation plan 

that costs the least, according to some performance measure. 

Usually, one has to accept feasible Implementation plans 

because the number of semantically equivalent programs is too 

large to allow for enumerative search. A query is an expression 

that describes the information that one wants to search for in a 

database. Query optimizers select the most efficient access plan 

for a question based on competing plans' estimated costs. These 

costs are, in turn, based on estimates of intermediate result 

sizes. Sophisticated user interfaces also use estimates of result 

sizes as feedback to users before a query is executed. 

Such feedback helps to detect errors in queries or 

misconceptions about the database. Query result sizes are 

usually estimated using various statistics that are maintained for 

relations in the database. These statistics merely approximate 

the distribution of data values in attributes of the connections. 

Consequently, they represent an inaccurate picture of the actual 

contents of the database. The resulting size-estimation errors 

may undermine the validity of the optimizer's decisions or 

render the user interface application unreliable. Earlier work 

has shown that mistakes in query result size estimates may 

increase exponentially with the number of joins. In conjunction 

with the increasing complexity of queries, this result 

demonstrates the critical importance of accurate estimation. 

Several techniques have been proposed in the literature to 

estimate query result sizes, including histograms, sampling, and 

parametric approaches. Of these,[1]histograms approximate the 

frequency distribution of an attribute by grouping attribute 

values into "buckets" (subsets) and comparing actual attribute 

values and their frequencies in the data based on summary 

statistics maintained in each bucket.  Implementing operations 

over these collections with conventional techniques severely 

lacks abstraction. Step-by-step instructions must be provided on 

how to iterate over the array, select elements, and operate on 

the details.   

 

Figure.1 Optimisation process 

 

JQL is an addition to Java that provides the capability for 

querying collections of objects.[6] These queries can be applied 

on objects in groups in the program or used to check 

expressions on all instances of specific types at run-time. 

Questions allow the query engine to take up the task of 

implementation details by providing abstractions to handle sets 

of objects, making the code smaller and allowing the query 

evaluator to choose the optimisation approaches dynamically 

even though the situation changes run-time. The Java code and 

the JQL query will give the same set of results, but the JQL code 

is elegant, brief, and abstracts away the accurate method of 

finding the matches. Java Query Language (JQL) by generating 

the dynamic join ordering strategies. Queries can be evaluated 

http://www.jetir.org/


© 2021 JETIR April 2021, Volume 8, Issue 4                                                                        www.jetir.org (ISSN-2349-5162) 

JETIR2104007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 44 
 

over one collection of objects or many groups, allowing the 

inspection of relationships between objects in these collections. 

The Java Query Language (JQL) provides first-class object 

querying for Java. 

II. Query Implementation 

 

For example, A difficulty with this decomposition is 

representing students who are also teachers. One solution is to 

have separate Student and Teacher objects, which are relate by 

name.  

The following code can then be used to identify students who 

are teachers: 

List<Tuple2<Faculty, Student>> 

 matches = new Array List<..>(); 

 for(Faculty f : all Faculty) { for(Student s : all Students) { 

if(s.name.equals(f.name)) { 

matches. add(new Tuple2<Faculty, Student>(f,s)); 

}}} 

 
 

In database terms, this code joins the name field for the 

allFaculty and allStudent collections[4]. The code is 

cumbersome and can be Replaced with the following object 

query, which is more succinct and, potentially, more efficient: 

List<Tuple2<Faculty, Student>> matches; 

Matches = selectAll (Faculty f=allFaculty, Student 

s=allStudents: f.name.equals (s.name)); 

This gives the same set of results as the loop code. The selectAll 

primitive returns a list of tuples containing all possible 

instantiations of the domain variables (i.e., those declared 

before the colon) where the query expression holds (i.e., after 

the colon). The domain variables determine the set of objects 

which the query ranges over: they can be initialized from a 

collection (as above); or left uninitialized to range over the 

entire extent set (i.e., the set of all instantiated objects) of their 

type. Queries can define as many domain variables as necessary 

and can use the usual array of expression constructs found in 

Java. One difference from regular Java expressions is that 

Boolean operators, such as && and ||, do not imply any order 

of Implementation for their operands. It allows flexibility in the 

order they are evaluated, potentially leading to greater 

efficiency. As well as its simplicity, there are other advantages 

to using this query in place of the loop code. The query 

evaluator can apply well-known optimisations which the 

programmer might have missed. By leaving the decision of 

which optimisation to use until run-time, it can make a more 

informed decision based upon the data's dynamic properties 

(such as the relative size of input sets), something that is, at best, 

challenging for a programmer to do. 

A good example, which applies in this case, is the so-called 

hash-join. The idea is to avoid enumerating all of all Faculty × 

all Students when there are few matches. A hash-map is 

constructing from the largest of the two collections, which maps 

the value being joined upon (in this case name) back to its 

objects. This still requires O(SF) time in the worst-case, wheres 

= |all Students| and f = |all Faculty|, but in practice is likely to 

be linear in the number of matches (contrasting with a nested 

loop which always takes O(SF) time). We have prototyped a 

Java Query Language system (JQL), which permits queries 

over object extents and collections in Java. The implementation 

consists of three main components: a compiler, a query 

evaluator, and a run-time system for tracking all active objects 

in the program. The latter enables the query evaluator to range 

over the extent sets of all classes. Our purpose in doing this is 

twofold: firstly, to assess the performance impact of such a 

system and provide a platform for experimenting with the idea 

of using queries as a first-class language construct. 

III.   Evaluation Pipeline 

The JQL evaluator evaluates a query by pushing tuples through 

a staged pipeline[4]. Each stage, known as a join in the 

databases' language, corresponds to a condition in the query. 

Only tuples matching a join's condition are allowed to pass 

through to the next. Those tuples which make it through to the 

end are added to the result set. Each join accepts two lists of 

tuples, L(left) and R(right), and combines them, producing a 

single list. We enforce the restriction that, for each intermediate 

join, either input comes from the previous stage or one comes 

directly from an input collection, and the other comes from the 

last step. It is known as a linear processing tree, and it simplifies 

the query evaluator, although it can lead to inefficiency in some 

cases. 

IV.  JQL Query Evaluator 

The core component of the JQL system is the query evaluator. 

This is responsible for applying whatever optimisations it can 

to evaluate queries efficiently[4]. The evaluator is a call at run-

time with a tree representation of the question (called the query 
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tree). The tree itself is either constructed by the JQL Compiler 

(for static queries) or by the user (for dynamic questions). 

 

Figure 2. Illustrating a Query Pipeline 

Given query Q, we use the histogram H to estimate the query 

predicates' selectivity and the joins' selectivities, which is used 

to construct a query plan. 

The first Implementation of Query Q uses the histogram H1 to 

estimate the selectivity. Then the result of the query is 

computed. But for the subsequent Implementation of the same 

query Q after a time T, the same histogram H can be left invalid. 

This situation arises because there is a possibility that the 

underlying data is updated between the first and the second 

Implementations of the same query.  Firstly, we check if the 

question is present in the log. The period difference between 

consecutive Implementations of the same query Q from the 

query log is compute. If that value is greater than a pre-

specified time interval, we directly recomputed the histogram 

because we assumed the data is modified within a pre-specified 

time interval. We first compute the error through the error 

estimate function, and then, based on the error estimate, we 

decide whether to recomputed the histogram or not. If the query 

is not present in the log, then we execute the query based upon 

the initial histogram that reduces the overhead cost of 

incremental maintenance of histogram the experimental results 

of how our approach various types of questions the comparison 

of run-times of our approach and the  

In this method, they are using selectivity estimate based on 

sampling some tuples, but that does not lead to efficient 

ordering of joins and predicates in a query. Therefore, we 

propose using the forecasts of selectivities of joins and the 

predicates from histograms to provide us an efficient ordering 

of joins and predicates in a query. Once we collect this 

information, we can form the query plan by having the order of 

joins and predicates in a question. After we get the query plan 

at compile-time, we execute that plan at run-time to reduce the 

Implementation time. JQL code's run-time due to our approach 

of optimizing the query and handling data updates using 

histograms. 

A. Estimating Selectivity Using Histogram 

A predicate's selectivity in a query is a decisive aspect for query 

plan generation[6]. The ordering of predicates can considerably 

affect the time needed to process a join query. To have the 

query plan ready at compile-time, we need to have all the query 

predicates' selectivities. To calculate these selectivities, we use 

histograms. The histograms are built using the number of times 

an object is called. For this, we partition the domain of the 

predicate into intervals called windows. With the help of past 

queries, the selectivity of a predicate is derived concerning its 

window. This histogram approach would help us estimate the 

selectivity of a join and hence decide on the order in which the 

joins have to be executed. So, we get the join ordering and the 

predicate ordering in the query expression at compile-time 

itself. Thus, from this available information, we can construct 

a query plan. 

B. Building the Histogram 

A histogram is one of the essential quality tools. It is used to 

graphically summarize and display the distribution[1] and 

variation of a process data set. A frequency distribution shows 

how often each different value in a set of data occurs. The 

primary purpose of a histogram is to clarify the presentation of 

data. When the access frequency is high and the tuples are 

accessed more often, we need to recompute the histogram. 

When the access frequency is low, the tuples are not accessed 

frequently, and therefore, there is no need to recomputed the 

histogram even in case of a data change. When building a 

histogram, we need to assign the values to buckets. The 

frequency distribution for numerical data is straightforward, 

but the frequency distribution for alphabetical information is 

not. Considering the alphabetical data such as first names, last 

names, Organization names, etc., the question arises as to how 

we can split these into buckets. We propose here to group the 

alphabetical data concerning the letter they start with and 

alphabets of similar frequency of occurrences grouped into a 

single bucket. To do this grouping, we use statistics from 

Figure that are computed by analysts showing the probable 

number of circumstances of each alphabet as a starting alphabet 

of textual data. This grouping avoids the existence of a very 

high-frequency alphabet with a very low-frequency alphabet in 

a bucket. 
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Figure 3. Frequencies of alphabets 

C. Incremental Maintenance of Histograms 

[1]we propose an incremental technique, which maintains 

approximate histograms within specified error bounds at all 

times with high probability and never accesses the underlying 

relations for this purpose. There are two components to our 

incremental approach: (i) maintaining a backing sample and (ii) 

a framework for maintaining an approximate histogram that 

performs a few program instructions in response to each update 

to the database and detects when the histogram requires an 

adjustment of one or more of its bucket boundaries. Such 

adjustments make use of the backing sample. There is a 

fundamental distinction between the backing sample and the 

histogram it supports: the histogram is accessed more 

frequently than the sample and uses less memory, and hence it 

can be stored in the main memory while the sample is likely 

stored on disk. A backing sample is a uniform random sample 

of the tuples in a relation that is kept up a to- date in the presence 

of updates. For each tuple, the sample contains the unique row 

id and one or more attribute values. We argue that maintaining 

a backing sample is helpful for histogram computation, 

selectivity estimation, etc.[6]In most sampling-based 

estimation techniques, whenever a sample of size _ is needed, 

either the entire relation is scanned to extract the sample, or 

several random disk blocks are read. In the latter case, the tuples 

in a disk block may be highly correlated, and hence to obtain a 

truly random sample, _ disk blocks must be read. A backing 

sample can be stored in consecutive disk blocks and can 

therefore be scanned by reading sequential disk blocks. 

Moreover, for each tuple in the sample, only the unique row id 

and the attribute(s) of interest are retained. Thus the entire 

sample can be stored in only a small number of disk blocks for 

even faster retrieval. Finally, an indexing structure for the 

sample can be created, maintained, and stored; the index 

enables quick access to sample values within any desired range. 

The underlying data could be mutable. For such mutable data, 

we need a technique by which we can restructure the histograms 

accordingly. Thus, in between multiple query Implementations, 

if the database is updated, we compute the histogram's 

estimation error by using the following equations. 

 

 where μa is the estimation error for every attribute 

 β   is the number of buckets, 

 N is the number of tuples in R 

 S  is the number of selected tuples 

 Fi is the frequency of bucket I as in the histogram 

 qf=  S/N is the query frequency 

 Bi is the observed frequency 

 Ti is the error estimate for each table 

 Wi is the weights concerning every attribute 

depending on the rate of change 

If the calculated error (Ti) is > 0.5, then we update the 

histogram.[6] we use the same old histogram to give the 

selectivity estimate. Next, we scan the database and update 

buckets. If some buckets exceed a fixed threshold, then we use 

the split and merge algorithm. However, the issues are how and 

when we know that the underlying database has been updated. 

For this, a heuristic that can be used is to consider popular 

queries. A popular query is a query that has a high frequency 

of occurrence. These popular queries can help in reporting data 

changes. We can constantly keep track of the result set of a 

popular question. When the consecutive Implementations of 

this query do not match, it indicates a database update, and thus, 

we can compute the error and decide whether to recompute the 

histogram or continue with the existing histogram. However, 

we do not want to recompute a histogram for a table that is not 

often accessed. Thus, we use the frequency of access to a 

particular table to decide when and when not to compute the 

histogram. If the access frequency is getting higher, it increases 

its probability, and the corresponding histogram needs to be 

maintained up-to-date. Access Frequency represents the 

number of tuples accessed by a query. When the access 

frequency is high and the tuples are accessed more often, we 

need to recompute the histogram. When the access frequency 

is low, the tuples are not accessed frequently, and therefore, 

there is no need to recompute the histogram even in case of a 

data change.  
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D. Method Outline for Error Estimation 

 

We compute the error estimate for each attribute in the database 

table by using the standard deviation between updated data 

values and old data values in the histogram buckets. Then, for 

every table, we have error estimates for all the attributes. Then, 

we take a weighted average of all the attribute error estimates. 

If that weighted average is more significant than a certain 

threshold, then the table's histogram must be updated. 

For every selection on the histogram attribute, we compute the 

approximation error (Ti). We calculate the error estimate for all 

the details (μa) in the table for each table. Then for each table, 

we take a weighted average of all the attribute errors. If that 

computed error (Ti) is greater than a threshold, we update the 

histogram; otherwise, we need not update it. If error (Ti) > 0.5, 

then we scan the database and update buckets. If some buckets 

exceed a threshold, then we use split and merge algorithms. 

E. The Split & Merge Algorithm 

The split and merge algorithm helps reduce the cost of building 

and maintaining histograms for large tables. The algorithm is 

as follows: When a bucket count reaches the threshold, T, we 

split the bucket into two halves instead of recomputing the 

entire histogram from the data. To maintain the number of 

buckets (β) fixed, we merge two adjacent buckets whose total 

count is least and does not exceed threshold T if such a pair of 

buckets can be found. Only when a merge is not possible, we 

recomputed the histogram from data. The operation of merging 

two adjacent buckets merely involves adding the counts of the 

two buckets and disposing of the boundary between them. Split 

a bucket, an approximate median value in the bucket is selected 

to serve as the bucket boundary between the two new buckets 

using the backing sample. As new tuples are added, we 

increment the counts of appropriate buckets. When a count 

exceeds the threshold T, the entire histogram is recomputed, or, 

using split merge, we split and merge the buckets. The 

algorithm for breaking the buckets starts with iterating through 

a list of buckets, splitting the buckets which exceed the 

threshold, and finally returning the new set of buckets. After 

splitting is done, we try to merge any two buckets that add up 

to the most negligible value and whose count is less than a 

certain threshold. Then we link those two buckets. If we fail to 

find any pair of buckets to merge, then we recomputed the 

histogram from the data. Finally, we return the set of buckets at 

the end of the algorithm. Thus, the problem of incrementally 

maintaining the histograms has been resolved. Having 

estimated a join and predicates' selectivity, we get the join and 

predicate ordering at compile-time. 

 

Figure 4. split and merge algorithm 

 

                   V. Implication 

 

 Our approach reduces run-time Implementation less 

than the existing JQL code's run-time due to our policy 

of optimizing the query and handling data updates 

using histograms. 

 We proposed a technique for query optimisation at 

compile-time by reducing the burden of optimisation 

at run-time. We suggested using histograms to 

estimate the selectivity of joins and predicates in a 

query and then, based on those estimates, to order 

query joins and predicates in a question. We have 

obtained the query plan at compile-time from the join 

and predicate order, and then we executed the query 

plan at run-time. Error estimate and split merge 

algorithms are efficient and maintain the histograms 

accurately 

 The comparison of run-times of our approach and the 

JQL approach for all the benchmark queries. The 

difference in run-times has occurred because in our 

process, we have estimated selectivities using 

histograms, and these histograms are incrementally 

maintained at compile time which provides the 

optimal join order strategy most of the times faster 

than the exhaustive join order strategy used by JQL 

VI. CONCLUSION  

I have shown the query optimisation strategies from the 

database domain that can improve the run time 

Implementations in the programming language. We proposed a 

technique for query optimisation at compile-time by reducing 

the burden of optimisation at run-time. I suggested using 

histograms to get the estimates of selectivity of joins and 

http://www.jetir.org/


© 2021 JETIR April 2021, Volume 8, Issue 4                                                                        www.jetir.org (ISSN-2349-5162) 

JETIR2104007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 48 
 

predicates in a query and then, based on those estimates, to 

order query joins and predicates in a question.  
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